Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies.

نویسندگان

  • J Rodman
  • P Soltis
  • D Soltis
  • K Sytsma
  • K Karol
چکیده

The phytochemical system of mustard-oil glucosides (glucosinolates) accompanied by the hydrolytic enzyme myrosinase (beta-thioglucosidase), the latter usually compartmented in special myrosin cells, characterizes plants in 16 families of angiosperms. Traditional classifications place these taxa in many separate orders and thus imply multiple convergences in the origin of this chemical defense system. DNA sequencing of the chloroplast rbcL gene for representatives of all 16 families and several putative relatives, with phylogenetic analyses by parsimony and maximum likelihood methods, demonstrated instead a single major clade of mustard-oil plants and one phylogenetic outlier. In a further independent test, DNA sequencing of the nuclear 18S ribosomal RNA gene for all these exemplars has yielded the same result, a major mustard-oil clade of 15 families (Akaniaceae, Bataceae, Brassicaceae, Bretschneideraceae, Capparaceae, Caricaceae, Gyrostemonaceae, Koeberliniaceae, Limnanthaceae, Moringaceae, Pentadiplandraceae, Resedaceae, Salvadoraceae, Tovariaceae, and Tropaeolaceae) and one outlier, the genus Drypetes, traditionally placed in Euphorbiaceae. Concatenating the two gene sequences (for a total of 3254 nucleotides) in a data set for 33 taxa, we obtain robust support for this finding of parallel origins of glucosinolate biosynthesis. From likely cyanogenic ancestors, the "mustard oil bomb" was invented twice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies.

UNLABELLED PREMISE OF THE STUDY The monogeneric family Ruppiaceae is found primarily in brackish water and is widely distributed on all continents, many islands, and from subartic to tropical zones. Ruppia taxonomy has been confusing because of its simplified morphology yet high phenotypic plasticity and the existence of polyploidy and putative hybrids. This study addresses the current class...

متن کامل

Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra.

The evolutionary history and relationship between plastids of dinoflagellate algae and apicomplexan parasites have been controversial both because the organelles are unusual and because their genomes contain few comparable genes. However, most plastid proteins are encoded in the host nucleus and targeted to the organelle, and several of these genes have proved to have interesting and informativ...

متن کامل

Phylogeny of suckermouth catfishes (Mochokidae: Chiloglanis) from Kenya: the utility of Growth Hormone introns in species level phylogenies.

African suckermouth catfishes (Mochokidae: Chiloglanis) occur in freshwater throughout tropical Africa. Specimens from all major drainages across Kenya were collected over three field seasons. Here we present a phylogeny inferred from both mitochondrial cytochrome b (cyt b) and introns of the nuclear Growth Hormone gene (GH). The phylogeny inferred from introns is largely congruent with the res...

متن کامل

Molecular phylogeny of Scutellaria (Lamiaceae; Scutellarioideae) in Iranian highlands inferred from nrITS and trnL-F sequences

Scutellaria with about 360 species is one of the largest genera of Lamiaceae. The Iranian highlands accommodate about 40 Scutellaria spp., and is considered as one of the main centers of diversity of the genus. Here, we present a phylogenetic study for 44 species of Scutellaria especially from Iranian highlands, representing major subgeneric taxa, based on nuclear rib...

متن کامل

Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans.

Chlorarachniophytes are amoeboflagellate algae that acquired photosynthesis secondarily by engulfing a green alga and retaining its plastid (chloroplast). An important consequence of secondary endosymbiosis in chlorarachniophytes is that most of the nuclear genes encoding plastid-targeted proteins have moved from the nucleus of the endosymbiont to the host nucleus. We have sequenced and analyze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 85 7  شماره 

صفحات  -

تاریخ انتشار 1998